YES 2.611 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/FiniteMap.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ BR

mainModule FiniteMap
  ((lookupFM :: FiniteMap Int a  ->  Int  ->  Maybe a) :: FiniteMap Int a  ->  Int  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  lookupFM :: Ord b => FiniteMap b a  ->  b  ->  Maybe a
lookupFM EmptyFM key Nothing
lookupFM (Branch key elt _ fm_l fm_rkey_to_find 
 | key_to_find < key = 
lookupFM fm_l key_to_find
 | key_to_find > key = 
lookupFM fm_r key_to_find
 | otherwise = 
Just elt


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ BR
HASKELL
      ↳ COR

mainModule FiniteMap
  ((lookupFM :: FiniteMap Int a  ->  Int  ->  Maybe a) :: FiniteMap Int a  ->  Int  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap a b) where 

  lookupFM :: Ord a => FiniteMap a b  ->  a  ->  Maybe b
lookupFM EmptyFM key Nothing
lookupFM (Branch key elt vw fm_l fm_rkey_to_find 
 | key_to_find < key = 
lookupFM fm_l key_to_find
 | key_to_find > key = 
lookupFM fm_r key_to_find
 | otherwise = 
Just elt


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Cond Reductions:
The following Function with conditions
lookupFM EmptyFM key = Nothing
lookupFM (Branch key elt vw fm_l fm_rkey_to_find
 | key_to_find < key
 = lookupFM fm_l key_to_find
 | key_to_find > key
 = lookupFM fm_r key_to_find
 | otherwise
 = Just elt

is transformed to
lookupFM EmptyFM key = lookupFM4 EmptyFM key
lookupFM (Branch key elt vw fm_l fm_rkey_to_find = lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find

lookupFM2 key elt vw fm_l fm_r key_to_find True = lookupFM fm_l key_to_find
lookupFM2 key elt vw fm_l fm_r key_to_find False = lookupFM1 key elt vw fm_l fm_r key_to_find (key_to_find > key)

lookupFM1 key elt vw fm_l fm_r key_to_find True = lookupFM fm_r key_to_find
lookupFM1 key elt vw fm_l fm_r key_to_find False = lookupFM0 key elt vw fm_l fm_r key_to_find otherwise

lookupFM0 key elt vw fm_l fm_r key_to_find True = Just elt

lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find = lookupFM2 key elt vw fm_l fm_r key_to_find (key_to_find < key)

lookupFM4 EmptyFM key = Nothing
lookupFM4 wv ww = lookupFM3 wv ww

The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
HASKELL
          ↳ Narrow

mainModule FiniteMap
  (lookupFM :: FiniteMap Int a  ->  Int  ->  Maybe a)

module FiniteMap where
  import qualified Maybe
import qualified Prelude

  data FiniteMap a b = EmptyFM  | Branch a b Int (FiniteMap a b) (FiniteMap a b


  instance (Eq a, Eq b) => Eq (FiniteMap b a) where 

  lookupFM :: Ord b => FiniteMap b a  ->  b  ->  Maybe a
lookupFM EmptyFM key lookupFM4 EmptyFM key
lookupFM (Branch key elt vw fm_l fm_rkey_to_find lookupFM3 (Branch key elt vw fm_l fm_r) key_to_find

  
lookupFM0 key elt vw fm_l fm_r key_to_find True Just elt

  
lookupFM1 key elt vw fm_l fm_r key_to_find True lookupFM fm_r key_to_find
lookupFM1 key elt vw fm_l fm_r key_to_find False lookupFM0 key elt vw fm_l fm_r key_to_find otherwise

  
lookupFM2 key elt vw fm_l fm_r key_to_find True lookupFM fm_l key_to_find
lookupFM2 key elt vw fm_l fm_r key_to_find False lookupFM1 key elt vw fm_l fm_r key_to_find (key_to_find > key)

  
lookupFM3 (Branch key elt vw fm_l fm_rkey_to_find lookupFM2 key elt vw fm_l fm_r key_to_find (key_to_find < key)

  
lookupFM4 EmptyFM key Nothing
lookupFM4 wv ww lookupFM3 wv ww


module Maybe where
  import qualified FiniteMap
import qualified Prelude



Haskell To QDPs


↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Zero, Zero, h) → new_lookupFM20(wx108, wx109, wx110, wx111, wx112, wx113, h)
new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Zero), bb) → new_lookupFM(wx33, Pos(Zero), bb)
new_lookupFM20(wx108, wx109, wx110, wx111, wx112, wx113, h) → new_lookupFM1(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx113), Succ(wx108), h)
new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, Succ(wx2340), Zero, ba) → new_lookupFM(wx232, Pos(Succ(wx233)), ba)
new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM2(wx3000, wx31, wx32, wx33, wx34, wx400, wx400, wx3000, bb)
new_lookupFM(Branch(Neg(wx300), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM(wx34, Pos(Succ(wx400)), bb)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Zero, Zero, bc) → new_lookupFM22(wx117, wx118, wx119, wx120, wx121, wx122, bc)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx1230), Succ(wx1240), bc) → new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, wx1230, wx1240, bc)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Zero), bb) → new_lookupFM(wx34, Pos(Zero), bb)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM21(wx3000, wx31, wx32, wx33, wx34, wx400, wx3000, wx400, bb)
new_lookupFM22(wx117, wx118, wx119, wx120, wx121, wx122, bc) → new_lookupFM10(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx117), Succ(wx122), bc)
new_lookupFM(Branch(Neg(Zero), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM(wx33, Neg(Succ(wx400)), bb)
new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, Succ(wx2340), Succ(wx2350), ba) → new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, wx2340, wx2350, ba)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx1140), Succ(wx1150), h) → new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, wx1140, wx1150, h)
new_lookupFM(Branch(Pos(wx300), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM(wx33, Neg(Succ(wx400)), bb)
new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, Succ(wx2430), Succ(wx2440), bd) → new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, wx2430, wx2440, bd)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Zero, Succ(wx1150), h) → new_lookupFM(wx111, Pos(Succ(wx113)), h)
new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Zero), bb) → new_lookupFM(wx33, Neg(Zero), bb)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Zero, Succ(wx1240), bc) → new_lookupFM(wx120, Neg(Succ(wx122)), bc)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx1140), Zero, h) → new_lookupFM1(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx113), Succ(wx108), h)
new_lookupFM(Branch(Pos(Zero), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM(wx34, Pos(Succ(wx400)), bb)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx1230), Zero, bc) → new_lookupFM10(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx117), Succ(wx122), bc)
new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, Succ(wx2430), Zero, bd) → new_lookupFM(wx241, Neg(Succ(wx242)), bd)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Zero), bb) → new_lookupFM(wx34, Neg(Zero), bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs.

↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Zero), bb) → new_lookupFM(wx33, Neg(Zero), bb)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Zero), bb) → new_lookupFM(wx34, Neg(Zero), bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(Pos(wx300), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM(wx33, Neg(Succ(wx400)), bb)
new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, Succ(wx2430), Succ(wx2440), bd) → new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, wx2430, wx2440, bd)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx1230), Succ(wx1240), bc) → new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, wx1230, wx1240, bc)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Zero, Zero, bc) → new_lookupFM22(wx117, wx118, wx119, wx120, wx121, wx122, bc)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Zero, Succ(wx1240), bc) → new_lookupFM(wx120, Neg(Succ(wx122)), bc)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM21(wx3000, wx31, wx32, wx33, wx34, wx400, wx3000, wx400, bb)
new_lookupFM21(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx1230), Zero, bc) → new_lookupFM10(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx117), Succ(wx122), bc)
new_lookupFM(Branch(Neg(Zero), wx31, wx32, wx33, wx34), Neg(Succ(wx400)), bb) → new_lookupFM(wx33, Neg(Succ(wx400)), bb)
new_lookupFM10(wx237, wx238, wx239, wx240, wx241, wx242, Succ(wx2430), Zero, bd) → new_lookupFM(wx241, Neg(Succ(wx242)), bd)
new_lookupFM22(wx117, wx118, wx119, wx120, wx121, wx122, bc) → new_lookupFM10(wx117, wx118, wx119, wx120, wx121, wx122, Succ(wx117), Succ(wx122), bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Zero), bb) → new_lookupFM(wx33, Pos(Zero), bb)
new_lookupFM(Branch(Neg(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Zero), bb) → new_lookupFM(wx34, Pos(Zero), bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ BR
    ↳ HASKELL
      ↳ COR
        ↳ HASKELL
          ↳ Narrow
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx1140), Succ(wx1150), h) → new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, wx1140, wx1150, h)
new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, Succ(wx2340), Succ(wx2350), ba) → new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, wx2340, wx2350, ba)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Zero, Zero, h) → new_lookupFM20(wx108, wx109, wx110, wx111, wx112, wx113, h)
new_lookupFM1(wx228, wx229, wx230, wx231, wx232, wx233, Succ(wx2340), Zero, ba) → new_lookupFM(wx232, Pos(Succ(wx233)), ba)
new_lookupFM20(wx108, wx109, wx110, wx111, wx112, wx113, h) → new_lookupFM1(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx113), Succ(wx108), h)
new_lookupFM(Branch(Neg(wx300), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM(wx34, Pos(Succ(wx400)), bb)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Zero, Succ(wx1150), h) → new_lookupFM(wx111, Pos(Succ(wx113)), h)
new_lookupFM(Branch(Pos(Succ(wx3000)), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM2(wx3000, wx31, wx32, wx33, wx34, wx400, wx400, wx3000, bb)
new_lookupFM2(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx1140), Zero, h) → new_lookupFM1(wx108, wx109, wx110, wx111, wx112, wx113, Succ(wx113), Succ(wx108), h)
new_lookupFM(Branch(Pos(Zero), wx31, wx32, wx33, wx34), Pos(Succ(wx400)), bb) → new_lookupFM(wx34, Pos(Succ(wx400)), bb)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: